TransformFromFunc#

class abtem.transform.TransformFromFunc(func, func_kwargs)[source]#

Bases: ArrayObjectTransform[object, object]

__init__(func, func_kwargs)[source]#

Methods

__init__(func, func_kwargs)

apply(array_object[, max_batch])

copy()

Make a copy.

ensemble_blocks([chunks])

Split the ensemble into an array of smaller ensembles.

generate_blocks([chunks])

Generate chunks of the ensemble.

Attributes

axes_metadata

List of AxisMetadata.

base_axes_metadata

List of AxisMetadata of the base axes.

base_shape

Shape of the base axes.

ensemble_axes_metadata

Axes metadata describing the ensemble axes added to the waves when applying the transform.

ensemble_shape

The shape of the ensemble axes added to the waves when applying the transform.

func

func_kwargs

metadata

Metadata added to the waves when applying the transform.

shape

Shape of the ensemble.

property axes_metadata: AxesMetadataList#

List of AxisMetadata.

property base_axes_metadata: list[AxisMetadata]#

List of AxisMetadata of the base axes.

property base_shape: tuple[int, ...]#

Shape of the base axes.

copy()#

Make a copy.

Return type:

Self

property ensemble_axes_metadata: list[AxisMetadata]#

Axes metadata describing the ensemble axes added to the waves when applying the transform.

ensemble_blocks(chunks=None)#

Split the ensemble into an array of smaller ensembles.

Parameters:

chunks (iterable of tuples) – Block sizes along each dimension.

Return type:

Array

property ensemble_shape: tuple[int, ...]#

The shape of the ensemble axes added to the waves when applying the transform.

generate_blocks(chunks=1)#

Generate chunks of the ensemble.

Parameters:

chunks (iterable of tuples) – Block sizes along each dimension.

Return type:

Generator[tuple[tuple[int, ...], tuple[slice, ...], ndarray], None, None]

property metadata: dict#

Metadata added to the waves when applying the transform.

property shape: tuple[int, ...]#

Shape of the ensemble.